Time-resolved studies on the collapse of magnesium atom foam in helium nanodroplets

نویسندگان

  • S Göde
  • R Irsig
  • J Tiggesbäumker
چکیده

Magnesium atoms embedded in superfluid helium nanodroplets have been identified to arrange themselves in a metastable network, referred to as foam. In order to investigate the ionization dynamics of this unique structure with respect to a possible light-induced collapse, the femtosecond dual-pulse spectroscopy technique is applied. Around zero optical delay a strong feature is obtained which represents a direct probe of the foam response. We found that upon collapse, ionization is reduced. A particular intensity ratio of the pulses allows us to address either direct ionization or photoactivation of the neutral complexes, thus affecting reaction pathways. A simplified scheme visualizes possible excitation scenarios in accordance with the experimental observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkali–helium exciplex formation on the surface of helium nanodroplets. II. A time-resolved study

We have monitored the time evolution of the fluorescence of K*He exciplexes formed on the surface of helium nanodroplets using reversed time-correlated single photon counting. In modeling the present data and that from our previous work on Na*He, we find that partial spin–orbit coupling as well as the extraction energy of helium atoms from the droplet contribute to the observed dynamics of both...

متن کامل

pour obtenir le titre de DOCTEUR EN SCIENCE

During the last decades, superfluid helium clusters have been widely studied both experimentally and theoretically. As a result of the latter studies, a new spectroscopic domain has emerged (HENDI) where helium nanodroplets are used as ultimate matrices for accurate spectroscopic measurements, taking advantage of their very low temperature and their weak interaction with the impurity. However, ...

متن کامل

Ultrafast electronic dynamics in Helium nanodroplets studied by femtosecond time-resolved EUV photoelectron imaging

Submitted for the DAMOP09 Meeting of The American Physical Society Ultrafast electronic dynamics in Helium nanodroplets studied by femtosecond time-resolved EUV photoelectron imaging OLIVER GESSNER, OLEG KORNILOV, CHIA WANG, MATHEW LEONARD, ANDREW HEALY, Lawrence Berkeley National Laboratory, STEPHEN LEONE, DANIEL NEUMARK, University of California Berkeley & Lawrence Berkeley National Laborator...

متن کامل

Entrance channel X-HF (X = Cl, Br and I) complexes studied by high-resolution infrared laser spectroscopy in helium nanodroplets.

Rotationally resolved infrared spectra are reported for halogen atom-HF free radical complexes formed in helium nanodroplets. An effusive pyrolysis source is used to dope helium droplets with Cl, Br and I atoms, formed by thermal dissociation of Cl2, Br2 and I2. A single hydrogen fluoride molecule is then added to the droplets, resulting in the formation of the X-HF complexes of interest. Analy...

متن کامل

Ultrafast probing of ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets.

The ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets are studied with time-resolved extreme ultraviolet ion imaging spectroscopy. At excitation energies of 23.6 ± 0.2 eV, Rydberg atoms in n = 3 and n = 4 states are ejected on different time scales and with significantly different kinetic energy distributions. Specifically, n = 3 Rydberg ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013